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The linear problem of the optimal control of systems in which the input signals contain a time delay is considered. The method 
of realizing optimal feedback control that is proposed is based on a special procedure for correcting the current optimal programme 
controls, realized by an optimal controller using a dual linear programming method. The results are used to construct two types 
of stabilizer of systems with a delay in the control. © 1998 Elsevier Science Ltd. All rights reserved. 

A new approach to the problem of synthesizing optimal systems when the optimized systems are 
described by ordinary differential equations has been described in [1-3]. Our aim here is to show how 
the basic constructions of [1-3] can be applied to control systems in which the mathematical models 
include a delay. The results on the synthesis of optimal systems can be used to design bounded stabilizing 
feedback. Unlike the approach to the stabilization of systems with a delay in the feedback channel used 
in [4], bounded stabilizing feedback achieved using a dual finear programming method. 

1. S T A T E M E N T  OF T H E  P R O B L E M  

We consider a control system whose behaviour in the time interval T = [0, t*] is described by the 
equation 

:c(t) = A x ( t ) +  bu(t)  + blU(t - h) (1.1) 

where x(t)  is the n-vector of state of the system at time t, u(t) is the value of the scalar control effect 
and h > 0 is the delay. We shall assume that system (1.1) is relatively controllable [5]. 

The class of accessible controls consists of piecewise-constant functions with quantization period v 
= t* /N = h/M, N ,  M are natural numbers, and u(t) = Uk, t ~ [kv, (k + 1)v[(k = 0, 1 . . . .  , N - 1), 
constrained by the bound 

lu(t) l ~<L, t~  T (1.2) 

We specify the terminal constraint as 

Hx( t "  ) = g ( H ~ R m×", rank H = m < n) (1.3) 

An accessible control u(t), t e T is said to be admissible if the corresponding path x(t), t e T of system 
(1.1) with the initial condition x(O) = xo, u(t)  = Uo(t), t e [-h, 0[ satisfies terminal constraint (1.3). 

On the set of admis,;ible controls, we define the quality criterion 

Jfx) = c,xfr) (1.4) 

and optimal program control u°(t), t ~ T: J(u °) = max  J(u). 
We now embed problem (1.1)-(1.4) in the family of problems 

c'x(t*) ~ max, k(t) = Ax( t )  + bu(t) + b l u ( t -  h) 

x( 'Q=z ,  u ( t ) = v ( t ) ,  t ~ [ ' c - h , ' c [  
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Hx(t*)=g, lu(t)l~<L, t ~ T x = [ x , t ' ]  

x = k v ,  k=0 ,1  ..... N - l ,  z ~ R  n 

(1.5) 

where x)(t), t ~ [x - h, x[ is a piecewise-continuous function, I ~(t) I ~< L, t ~ [x - h, x[. 
The optimal program control of problem (1.5) is denoted by u°(t  I x, z, a3x(.)), t ~ Tx, (a3x(.) = 

(~(t), t ~ [x - h, x[)). Let D~ be the set of all pairs (z, ux(.)) for which problem (1.5) has a 
solution. 

The functional 

u ° z ,u <)) = u ° <x I x, z,u <)), 

"~ ~ T v = {0,v ..... (N - 1)v} 

(1.6) 

will be called the optimal feedback control (the positional solution of problem (1.5)). 
To construct functional (1.6) in explicit (formulaie) form, as the classical statement of  the problem 

of optimal synthesis expects, is a difficult problem which has still not been solved even for ordinary 
systems (1.1), h = 0. The difficulties that the solution of this problem encounter, both in the theory of 
the maximum principle and in dynamic programming, are printed out in [2]. Since they are fundamental 
and there is no prospect of  solving them in the foreseeable future, it seems reasonable at this stage to 
modify the actual formulation of  the problem. 

The newly formulated problem of optimal synthesis is as follows [1]. Assume that the optimal feedback 
(OFB) (1.6) has been constructed. We use it to close system (1.1) and consider the behaviour of the 
closed system under constantly operating perturbations. The introduction of perturbations is not 
accidental. A feature of classical OFB [6] is that although it is defined by a determinate system, it is 
intended for the operation of a system with unknown perturbations. If no perturbations were assumed 
in the introduction of the feedback, there would be no point in having OFB, because the optimal program 
control works perfectly well in ideal conditions. 

We will therefore consider the behaviour of the system 

k( t )  = A x ( t ) + b u ° ( t , x ( t ) , u t ( . ) ) + b l U o ( t  - h ) + w ( t ) ,  x(O) = x o, t ~ [0,h[ 

x( t )  = A x ( t )  ÷ bu ° (t, x ( t ) ,  u t (.)) + blu ° (t  - h, x ( t  - h), ut_ h (.)) + w(t) ,  t ~ [h, t* [ (1.7) 

where ut(.) = (u(s) ,  s ~ It - h, t D, u(s). = u°(s, x(s) ,  us(.))  is the control used at the previous instant s, 
u(s  ) = Uo(S ), s ~ [-h,  0[, w( t ), 0 <<- t ~ t °, w(  t ) --- O, t > t °, is the unknown piecewise-continuous n-vector 

0 function of the perturbations and t = NIV , N 1 < N - M is the time at which the operation of 
perturbations ceases. 

We will denote by w*(t) ,  t e 7 o = [0, to], a perturbation realized in some fixed control process. By 
(1.7), it will correspond to the path x*( t ) ,  t ~ T, of the system to be optimized (assuming for simplicity 
that the control (1.7) has a solution). It is clear from (1.7) that a control u*( t )  = u°(t ,  x*( t ) ,  u ' t ( ' ) ) ,  t 
T will be received at the input of the system, so that in any specific control process we need to know 
not the entire OFB, but its values along an isolated curve (x*(t) ,  u ' t ( ' ) ) ,  t ~ T. Moreover, we do not 
need to know the value u*(x)  = u°(x ,x*(x) ,  u'x(.)) before the time x; we need only knbw how to compute 
it when the system is in the current position (% x*(x) ,  u'x(.)). This is clearly very much simpler than 
the initial problem of constructing the functional (1.6). We shall show below how to solve this problem 
using modern computational techniques. 

We begin by introducing a new concept. Any device which is capable of computing the realization 
u*(t) ,  t ~ T, of OFB (1.6) in each specific process in real time will be called an optimal regulator. Thus, 
we have reduced the problem of realizing the OFB to describing the algorithm of operation of  an optimal 
controller. 

2. T H E  O P E R A T I N G  A L G O R I T H M  O F  A N  O P T I M A L  C O N T R O L L E R  

Suppose that the controller has been constructed and has worked at times 0, v . . . . .  (k - 1)v, and 
that system (1.7) was in state x*(kv) at time x -- kv. To work out the control u*(t ) ,  t ~ [kv, (k  + 1)v[ 
at time x = kv, it uses the optimal program control of the problem 
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c'x(t*) ---> max, k(t) = Ax(t) + bu(t) + blU(t - h) 

x(kv) = x*(kv), u(t) = u* (t), t ~ [kv- h, kv[ 

nx( t*)=g,  lu(t)l<-L, t~r~ 

In functional form, problem (2.1) has the form 

t* 
c' ~ F(t* - t)(bu(t) + blu(t - h)) dt ~ max 

"C 

t* 
HF(t* - x) x* (X) + H ~ F(t* - t) (bu(t) + blu(t - h)) dt = g 

u(t)=u*(t), t ~ [ x - h , x [ ;  lu(t)l<-L, t~r~ 

(2.1) 

where F(t), t i> 0 is the fundamental matrix of solutions of the homogeneous systemx = Ax. 
This is equivalent to the following linear programming problem 

K - M  (k+i)v K (k+i)v 
vZ c' S ( F ( t * - t ) b + F ( t ° - t - h ) b l ) d t ~ i  + ~, c' ~ F(t*-t)bdt~i--->max 
i - -1 (k+i - l )v  K - M + I  (k+i - I )v  

. K - M  (k+i)v K (k+i)v 
E H ~ ( F ( t * - t ) b + F ( t * - t - h ) b l ) d t ~ i +  ~, H ~ F( t* - t )bd t~ i  = (2.2) 
i=l (k+i - l )v  K - M + I  (k+i - l )v  

* (k+l)v 
= g - H F ( t * - k v ) x  ( ' O - H  ~ F( t* - t )b lU*( t -h )d t  

k v  

I~il<~L, i=1 ,2  ..... K, K = N - k  

Problem (2.2) contains m basic constraints and K variables. Let ~°(x) = (~0(x), i = 1, 2 . . . . .  K) 
denote the optimal plan of problem (2.2) and K°(x) the optimal support of problem (2.2) [7]. Then the 

, 0 0 0 optimal program contlol in problem (2.1) will be u (t) = uk+i_ 1 = ~(x),  t ~ [(k + i - 1)v, (k + i)v[, 
i =  1 , 2 , . . . , K .  

At time x = (k + 1)v the controller has to solve problem (2.2) fo rK := K -  1 and the new statex*(x), 
that is, the number of variables in problem (2.2) is one less and the vector of the right-hand sides changes 
(the smaller v is, the less the vector changes). Thus there is no need to solve the linear programming 
problem completely at time (k + 1) v. If the optimal support K°(kv) is used as the initial approximation 
for time (k + 1) v, then problem (2.2) can be solved for time (k + 1) v much more quicldynby the dual 
linear programming method [7] than when there is no information about the support K"(kv). Thus, 
having constructed the optimal program control for time x = 0 before the start of the process, at each 
instant kv (k = 1, 2 . . . . .  N1) the controller corrects the existing optimal control for time (k - 1) v and 
in the interval [kv, (k + 1) v[ sends the value u*(t) =~(kv) ,  t ¢ [kv, k + 1) v[ to the input of system 
(:1.7). 

If the time taken to compute the control u*(t), t ~ [x, x + v[, is no greater than v, we say that the 
controller computes the realization of the OFB in real time. 

Once the perturbations have ceased, the controller uses the optimal program control for time Nlv 
and sends the values u*(t) = ~.~(NIV), t ~ [(N1 + i - 1)v, (N 1 + i)v[ (i = 1, 2 . . . . .  N -N1)  to the input 
of system (1.7). 

Example. Consider the problem of the displacement of a system of two point masses connected by an elastic 
spring (Fig. 1). The equations of motion of the system are 

"~1 ( t )  = x 3 ( t ) ,  "~2 ( t )  = x 4 ( l )  

k 
(x ! ( t)-  x 2 (t)) +u(t-  h), .i: 4(t) = ~ (x I (t)-  x 2 (t)) x3(t) ra 

M 

where xl, x2 are deviations from the state of rest of the first and second objects, x3, x4 are their velocities, m and 
M are the masses of the objects and k is the coefficient of elasticity of the spring. 
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Fig. 1. 

Using control effects of minimum intensity it is required to move this system to a new position in a fixed time 
t* and stay there. Having chosen the fixed initial data, we obtain the following optimal control problem 

p ~ min 

Jq(t)=x3(t), Jc2(t)=x4(t) 

-r3 (t) = - (x  I ( t ) -  x 2 (t)) + u( t -  h), x4 (t) = 2(x! ( t ) -  x 2 (t)) (2.3) 

Xl(0)=0,5, x2(0)=0,4,  x3(0)=0,2, x4(0)=-0,1 

Xl(8)=l, x2(8)=1, x3(8)=0, x4(8)=0 

u(t)=-O, t~[-h ,0[ ,  lu(t)l~p, t E [ 0 , 8 - h ]  

The results of the programmed solution of problem (2.3) for different delays h are shown in Figs 2(a) and 3(a), 
which depict the phase trajectories of the objects, and in Fig. 4(a), in which the corresponding programmed controls 
are represented by the solid lines for h = 0 and by the dashed lines for h = 2. 

Suppose that a perturbation w(t), t e [0, 6] which is unknown to the controller acts on the second object 
(Fig. 1), and the behaviour of the system is described by the equations 
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Yq(t)=x3(t), x2(t)=x4(t) 

"~3 ( t )  = - ( x  I ( t )  - x 2 ( t ) )  + u(t - h ) ,  -~4 ( t )  = 2(x] (t) - x 2 ( t ) )  + w(t) 

The results of the operation of the controller for w(t) = 0.4 sin 3t, t ~ [0, 6] are shown in Fig 2(b) and 3(b) (the 
phase trajectories of the objects) and in Fig. 4(b) (the controls u*(t), t E [0, 8[) worked out by the controller). The 
same notation is used as !in Figs 2(a), 3(a) and 4(a). 

3. T H E  U S E  OF O P T I M A L  F E E D B A C K  TO S T A B I L I Z E  D Y N A M I C  
S Y S T E M S  W I T H  A D E L A Y  IN T H E  C O N T R O L  

Consider a dynamical system, the behaviour of which together with the applied control can be 
described for t I> 0 by the equation 

k ( t )  = A x ( t )  + bu( t )  + b ] u ( t -  h), x(O) = x 0 

u(t) = Uo(t), t ~ [-h,  0[ 

( 3 . 1 )  

Assuming that the intrinsic dynamics of the system (when u(t)  =- 0, t I> 0) is unstable, we have the problem 
of stabilizing it by bounded controls. 

Let G be some neighbourhood of the state of equilibrium x = 0 of system (3.1). The functional u(x,  
~)(.)), x E G, ~)(.) ~ V = {~(.) = (~(t), t ~ [-h, 0 D, I ~(t) I ~< L, t ~ I-h, 0[} will be called a bounded 
stabilizing feedback (BSFB) if (1) u(O, 0) = 0, (2) l u(x,  a~(.)) I <~ L , x  ~ G ,  ~( .)  ~ V, (3) the dosed  system 

x ( t )  = A x ( t )  + bu(x ( t ) ,u  t (')) + bluo (t - h) 

x(0)=x0, t~  [0, hi 

x ( t )  = A x ( t )  + bu (x ( t ) , v  t (')) + b l U ( X ( t -  h),u t-h (')), t ~ h  

(3.2) 

where u*(t ) ,  t >- 0 is the; control applied to the system at time t, u*( t )  = u°(t) ,  t ~ [ -h ,  0[, x)t(.) = (~(s) 
= u*( t  + s), s ~ [-h, 0[), for allx 0 e G, u°(.) ~ Vhas a unique continuous solutionx(t), t I-- 0, (4) the 
zero solution x ( t )  -- O, t >- 0 of system (3.2) is asymptotically stable in G x V. 

Unlike the problems of optimal control studied in previous sections, the stabilization problem (the 
construction of  the BSFB) is defined over the entire time axis t I> 0. However, a shown for ordinary 
dynamical systems in [3], it can be solved by means of optimal control with a finite horizon using the 
principle of "sliding" control. 

We will show that this approach is also successful in the case of system (3.1) with a delaying control. 
To do so, we will analyse how the BSFB is used in a specific stabilization process. Letx*(t), t ~ 0 denote 
the path of  the system being stabilized, and let ~ ( . )  denote the set of values of the control u*( t  + s),  
s • [-h, 0[ sent to the input of system (3.2) in the interval [t - h, t[. It is clear from the above definition 
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of  the BSFB that  for  a specific stabilization process, the values of  the funct ional  u(x, ~)(.)), x e G, ~(.) 
• Va re  needed  only for  specific real izat ionsx*(t) ,  u*(t), t >- O. Moreover ,  we do not  need  to know the 
value ofu*(x)  = u°(x*(x), a~*(.)) beforehand,  but  merely how to compute  it at t ime x. We call the function 
u*(t) = u*(kv),  t • [kv), (k + 1) v[ (k = 0, 1 . . . .  ) a discrete realization of  the BSFB, and a device 
which, in each specific process,  for  chosen v is capable of  comput ing  the values u*(kv)  (k = 0, 1, . . . )  
in real t ime will be called a (discrete) stabilizer. 

Thus, the stabilization of  dynamical  systems with a control  delay has involved the construct ion of  an 
algori thm to opera te  the stabilizer. The  algori thm is based on the operat ing algori thm of  an opt imal  
control ler  for  a special opt imal  control.  We will consider  two types of  stabilizer, def ined by the quality 
cri terion of  an auxiliary opt imal  control.  

The first type o f  stabilizer. We will choose the pa ramete r  of  the me thod  @ = Nv  and in t roduce the 
auxiliary (accompanying)  opt imal  control  problem [8] 

p(z, u(.)) = min p 

x(t)  = Ax( t )+  bu(t)+ b lu ( t -h ) ,  x(O) = z 

u(t) = u(t), t ~ [-h, O[, x ( e ) = 0  

t¢[0,e-h[, u(t)--O, t~ [e -h ,e [  

(3.3) 

We call the funct ional  u°(t I z, ~(.)), t e [0, O - h[ an opt imal  control  of  p rob lem (3.3) if the path  
x°(t I z, a~(.)), t e [0, O] that  it generates  satisfies the constraintx°(O I z, ~(.)) = 0 and the quali ty cri ter ion 
has the min imum value. 

The  funct ional  u°(x(t), 1)t(.)) = u°(0 Ix(t), "Ot(')),x(t ) E R n, "Ot(" ) E V, t ~ 0 is a BSFB. 

Indeed, it follows from the conditions of the auxiliary problem that: (1) u°(0, 0) = 0; (2) for each bounded set 
G C R ~ there is a number L > 0 for which p(x, ~(.)) ~< L for allx • G, u(-) • V, and thus also I u°(x, ~(')) I <~ L. 

(3.2) (u(x(t), ~t(')) = u (x(t), ~(-))) is asymptotically stable. In order to show this, we will consider The closed system 0 
an arbitrary time x =/v,  state x* (x) = x* (x Ix0, u0(. )) and computed control u ~(. ) = (u*(t), t • Ix - h ,  x D corresponding 
to an arbitrary initial statex(0) = x0 • G and u0(.) • V. For the positionx*(x), u~(-) the quality criterion of problem 
(3.3) takes the value p(x*(x), u~(.)). It is computed by solving problem (3.3) with z = x*(x), ~(t) = u*(x + 1), t e 
I-h, 0[. Clearly, for x*(x) = 0, u*(x + t) = 0, t e I--h, 0[, we have the equation p(x*(x), u*~(.)) = 0. But ifx*(x) # 
O, u*(x + t) # O, t • [-h, 0[ then p(x*(x), u~(.)) > 0. 

In functional form problem (3.3) has the form 

p --> rain 

My 
F(Nv)x* (x)+ J F(Nv- t )b lu* ( z - h + t ) d t +  

o 
K - I ( i + l ) v  

+ E J(F(Nv-t)b+F(Nv-t-h)bl)dtu i =0 (3.4) 
i=0 iv 

[u i l<~p,  i = 0 , 1  . . . . .  K - l ,  K = N - M  

Introducing the new variables ~0 = l/p, ~/= Ui_l/p (i = 1, 2 . . . . .  K), we obtain the equivalent linear programming 
problem with K + 1 variables and n basic constraints 

---> max 

My 
(F(Nv)x* (X) + J F(Nv - t)blU* (X - h + t)dt)~.,O + 

0 
K iv 

+ ~  ~ ( F ( N v - t ) b + F ( N v - t - h ) b l ) d t ~ i = O  (3 .5 )  
i=1 ( i - I )v  

~-~o~>0, ]~i1~1, i=1,2 ..... K 

We will denote by g°(x) = (~°(x), i = 0, 1 . . . . .  K) the optimal plan of problem (3.5) and by/c°(x) the optimal 
0 0 0 support of problem (3.5). Then the optimal control in problem (3.4) will be u (x) = (/t°(x) = ~i+l(x~0(x), i = 0, 

1 . . . . .  K - 1 .  
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At time x + v the closed system (3.2) is in the state 
Y V 

x* (x + v) = F(v)x' {~) + J Fry- t)bdlu°(~) + j ~'(v- t)l~u" (~ - h) 
o o 

We will show that the value of the quality criterion of problem (3.3) for the new position z = x*(x + v), ~(t) = 
u*(x + v + t), t ~ [-h, 0[satisfies the inequality p(x*(x + v), U*+v(')) ~< p(x*(x), u*(.)). For, under the effect of 
the control ui(x + v) = U~+l('~ ) (i = 0, 1 . . . . .  K -  2), ui(x + v) = 0 (i = K -  1, K, . . . .  N -  1), system (3.2) moves 
from the initial position x*(x + v), u~+v(') to the origin of coordinates and is held there, and the inequality lui('¢ 
+ v)l ~< p(x*(x), u~(.)) (i = 0, 1 . . . . .  N - 1) holds for the control Ui('~ q" V) (i = 0, 1 . . . . .  N - 1). Hence, the 
inequality p(x*(x + v), u~+v(.)) = p(x*(x), u*(-)) will also hold on the optimal control u°(x + v) (i = 0, 1 . . . . .  N 
- 1). It remains to show that the equation p(x*(x + v), u~+v(.)) = p(x*(x), u~(.)) can hold for not more than K 
steps. 

If the equations 

p(x*('Q,u*x(.))=p(x*(%+qv),u~+qv(.)), q = l , 2  ..... K - 1  (3.6) 

are satisfied during stabilization, then the control ui(x + qv) = U°+q(X) (i = O, 1 . . . . .  K - q - 1), ui(x + qv) = 0 
(i = K -  q, K -  q + 1 . . . . .  N - 1) will be an optimal program control in problem (3.5) for the position z = x*(x 
+ qv), ~(t) = u*(x + qv + t), t ~ I-h, 0[ (q = 1, 2 . . . . .  K - 1). If Eq. (3.6) is not violated for q = K, then the 
optimal program control for position z = x*(x + Kv), ~(t) = u*(x + Kv + t), t ~ I-h, 0[ will be ui(x + Kv) = 0 (i 
= 0, 1 . . . . .  N -  1), which gives p(x*(x + Kv), u*+xv(-)) = 0. Thus, it is guaranteed that 

p(x (X),u x (-)) > p(x (X + Kv),ux+g v (.)) (3.7) 

Using inequality (3.7), and arguments typical of the method of Lyapunov functions [9-12], it can be shown that 
p(x*(x + kv), ulv(')) ---) 0, II x*(kv) II ~ 0, k ---) **. Hence it follows that II x*(t) II ~ 0, t ---> **, as it was required to 
prove. 

We will now describe the operat ing algori thm of  the stabilizer. 
Suppose that  the stabilizer has worked  at t imes 0, v , . . . ,  Iv. To work out  the cont ro l  u*(x)  at t ime x 

= Iv it uses the values of  the opt imal  p rogram control  u°(0 I x*(x), ,x( . ))  of  p rob lem (3.3) for  z = x*(x),  
a)(t) = u*(x  + t), t e [-~h, 0[. This is equivalent  to the l inear programming p rob lem (3.5). To work  out  
the control  u*(x + v), the stabilizer needs to know the solution of  p rob lem (3.3) for  the initial posi t ion 
z = x*(x  + v),  . ( t )  = u*(x  + v + t), t e [-h, 0[. This is equivalent  to the following l inear p rogramming  
problem 

~0 ---> max 
My 

( F ( N v ) x *  (X + V)+ S F ( N v - t ) b ] u *  ('c + v - h + t ) d t ) ~ o  + 
o 

K iv 
+~'. S ( F ( N v  - t )b  + F ( N v -  t -  h )b  I )dt~i  = 0 (3.8) 

i=l ( i - I ) v  

Ig,l-<l,  i = 1 , 2  . . . . .  K 

The  new problem differs f rom (3.5) only in the vector  of  the conditions for  variable ~ and the smaller 
the value of  v the less t ha t  difference is. As in the calculation of  the realization of  opt imal  feedback,  
p rob lem (3.8) can be solved by the dual l inear programming method  using the opt imal  suppor t  o f  
p rob lem (3.5)/C°(x). For  small v, the solution of  the new problem is const ructed in a small numbe r  of  
iterations. For large v, the number  of  iterations of  the dual method  can be reduced by dividing the interval 
[% x + v] into enough small intervals that, by solving problems of  type (3.5) by the dual me thod  in those 
intervals, a small number  of  i terations is needed  to compute  the optimal control  u°(tlx*(% + v), "x+v(')), 
t = e [0, O - h[ at t ime x + v. 

The method is illustrated by the problem of damping a two-mass oscillatory system (Fig. 5). Here m and M denote 
the masses, xl, x2 their coordinates, cl, c2 the coefficients of elasticity of the springs and u the damping action. The 
mathematical model of the system has the form 

Jq(t)=x3(t), :c2(t)=x4(t) :c3(t)=(-C!Xl(t)+ClX2(t)+u(t-h))/ra (3.9) 
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Fig. 5. 

x4 (t) = (c Ix I (t)-(c I +c 2)x 2 (t)) I M 

The following parameter values are assigned: rn = 1, M = 10, cl = 1, c2 = 9.2. We take the initial state asx 0 = 
(0.5; 0.4; 0.2; -0.1). In this case auxiliary problem (3.3) has the form 

p-- ,min,  ~q(t)=x3(t) ,  Yc2(t)=x4(t) 

J¢3 (t) = - x  1 (t) + x 2 (t) + u ( t -  h), .~4 (t) = 0,Ix I ( t ) -  1,02x2 (t) 

x (0)=z ,  u( t )=0,  t~[ -h ,0[ ,  x (O)=0  

lu(t)l<~p, t ¢[0,O-h[  

The parameters of the problem were given the values O = 4, v = 0.1. The system was damped with different 
delays. Figure 6 shows the realized statesx*l(x),  x >>- 0 corresponding to each value of h, the realized controls u*('c), 
x I> -h,  and the behaviour of the Lyapunov function p(x*(x), u*~(.)) for each of the processes (the solid lines for 
h = 0 and the dashed lines for h = 1). 

The  second  type o f  stabilizer. T h e  opera t ing  a lgor i thm of  this stabilizer is based  on the solut ion of  an 
auxiliary op t imal  cont ro l  p r o b l e m  [8] of  the type 

O-h  
~t(z,v(.))=min ~ lu(t) ldt 

0 

2 ( 0  = A x ( t )  + bu( t )  + b t u ( t -  h)  x(O) = z 

u(t) = v(t),  t •  [-h,  O[, x ( O ) = 0  

[u(t)l ~ L ,  t •  [0, O - h [ ,  u ( t )=0 ,  t •  [ O -  h, O[ 

(3.10) 

As  in the  case of  the first type of  stabilizer, u°(t  I z, . ( . ) ) ,  t e [0, O - h[ deno tes  the  op t ima l  p r o g r a m  
control  of  p r o b l e m  (3.10). Le t  G be  the set  of  all z • R n for  which p r o b l e m  (3.10) has a solution. 

T h e  funct ional  u°(x( t ) ,  " t ( ' ) )  = u°(0 Ix(t), "ot(.)),x(t ) • G ,  " t ( ' )  • V, t >>- O, is the BSFB. 

For the proof, we take the Lyapunov function as the optimal value of the quality criterion in problem (3.10). 
Clearly Ix(0, 0) = 0, It(x, "o(-)) > 0 , x ,  0, ~(.) ~ 0. 
Suppose at time x = Iv in problem (3.10), forz  = x*(x), u(t) = u*(x + t), t ~ [-h, 0[, that we have constructed 

the optimal program control uU(x) = (uiU(x), i = O, 1 . . . . .  K -  1), in which the quality criterion has the value 

, , K - I  

X 
i=0 

At time ~ + v the system is in the state 
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V V 

x * ( x + v ) =  F(v)x* (x)+ ~ F(v-t)bdtu°l (X)+ f F(v-t)bldtU* (X-h ) 
0 o 

In problem (3.10) forz  = x*(x + v), a~(t) = u*(x + v + t), t ~ [-h, 0[, the control 

will be admissible, and 

ui(x+v)=u°i+l(X), i=0,1 ..... K - l ;  ui(x+v)=O, i=K,K+I ..... N (3.11) 

K 

i=1 

Clearly, ifu°(x) ;~ 0, then p(x*(X + v), u*+v(')) < p(x*(x), u~(.)). Ifu°(X) = 0 and p(x*(x + v), U~+v(-)) = p(x*(x), 
u~(.)), then in problem (3.10) for z = x*(x + v), u(t) = u*(x + v + t), t ~ [-h, 0[, the control (3.11) is the optimal 
program control. By virtue of the inequality la(x* (x), u ~(.)) > 0, there is a number s < K for which U°s(X) ~ O, ensuring 
that the inequality P(x*0: + (s + 1)v), u~+(s+l)v(')) < p(x*(x), u~(-)) is satisfied. 

Thus the Lyapunov function p(x*(x), u*(.)) decreases monotonically along the sequence x*(kKv), u~v(.) (k = 
0, 1 , . . . ) .  By the usual argument in the method of Lyapunov functions [10-13], it can be shown that the limit must 
be zero: lira p(x*(kKv), u,&v(')) = 0, k ---> .o. Hence it follows that IIx*(kKv) II ---> 0, k --4 ** and Ilx*(t)II ~ 0, t ~ .o, 
which it was required to prove. 
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Since Ix(x*(x + v), u~(.)) ~< IX(X*(X + v), u*(.)) - I  u*(x) I, it can be shown that to realize stabilizing 
feedback u*(kv) (k = 0, 1 . . . .  ) the following property must hold 

t,°<kv)l 
k=0 k=O 

where u°(kv) (k = 0, 1 . . . . .  K - 1) is the optimal program control in problem (3.10) for the initial 
position z = x0, ~(t) = Uo(t), t e [-h, 0[. Thus, even before the start of the stabilization process, we can 
compute the maximum value of the requisite control resources. 

We will now describe the operating algorithm of the stabilizer. 
The optimal control problem (3.10) is equivalent to the linear programming problem 

/f 

~, (u i + wi )--> rain 
i=l 

K iv 
~ ( F ( N v - t ) b + F ( N v - t - h ) b t ) d t ( v i - w i ) =  

i=l ( i - l ) v  

MY 

= - F ( N v ) z -  ~ F ( N v  - t)b~v (x - h + t )dt  
0 

I ) i+wi<-L ,  oi>~O, wi>~O, i=1,2 . . . . .  g 

(3.12) 

0 At each time x = kv, the stabilizer uses the dual method to construct the solution (a~i °, wi, i = 
1, 2 . . . . .  K) of problem (3.12) for z = x*(x), ~(t) = u*(x + t), t ~ [-h, 0[, taking the initial support 
as the optimal support of problem (3.12) forz  = x*(x - v), ~(t) = u*(x - v + t), t ~ [-h, 0[. The control 

. 0 0 u (t) = a~x - wl is sent to the input of the system in the interval [% x + v[. 

As an illustration we will consider the damping of system (3.9) using the second type of stabilizer. 
In this case the auxiliary problem has the form 

ofhlu<t> I -~ min, -~1 (t) = x 3 (t), -~2(t) = x 4(t) 
0 

x3( t )=-Xl ( t )+x2( t )+u( t -h) ,  Xa(t)=O, lxl(t)-l,O'2x2(t) 

x(0)=z, u(t)=0, te[-h,O[, x(O)=0 

[u(t)[ ~<10, t ~10,O-h[ 

The parameters of the problem are given the same values as before. 
Figure 7 shows the results of damping with different delays the realized statesx~(x), x ~> 0, worked 

out by the stabilizer of control u*(x), x >~ -h ,  and the values of the Lyapunov function [t(x*(x), u*(.)). 
The same notation is used as in Fig. 6. For each process we have calculated the values of the sum of 
the moduli of the realized controls 

s -- ~9 0 lu*(0.1k)l: (1) h = 0, s = 27.45; (2) h = 1, s = 64.69. 

This research was partially supported financially by the International Soros Education Programme 
for the Exact Sciences. 
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